EyeApp

Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence

Objectives

To assess the role of artificial intelligence (AI)-based automated software for detection of diabetic retinopathy (DR) and sight-threatening DR (STDR) by fundus photography taken using a smartphone-based device and validate it against ophthalmologist’s grading.

Methods

Three hundred and one patients with type 2 diabetes underwent retinal photography with Remidio ‘Fundus on phone’ (FOP), a smartphone-based device, at a tertiary care diabetes centre in India. Grading of DR was performed by the ophthalmologists using International Clinical DR (ICDR) classification scale. STDR was defined by the presence of severe non-proliferative DR, proliferative DR or diabetic macular oedema (DME). The retinal photographs were graded using a validated AI DR screening software (EyeArt®) designed to identify DR, referable DR (moderate non-proliferative DR or worse and/or DME) or STDR. The sensitivity and specificity of automated grading were assessed and validated against the ophthalmologists’ grading.

Results

Retinal images of 296 patients were graded. DR was detected by the ophthalmologists in 191 (64.5%) and by the AI software in 203 (68.6%) patients while STDR was detected in 112 (37.8%) and 146 (49.3%) patients, respectively. The AI software showed 95.8% (95% CI 92.9–98.7) sensitivity and 80.2% (95% CI 72.6–87.8) specificity for detecting any DR and 99.1% (95% CI 95.1–99.9) sensitivity and 80.4% (95% CI 73.9–85.9) specificity in detecting STDR with a kappa agreement of k = 0.78 (p< 0.001) and k = 0.75 (p< 0.001), respectively.

Conclusions

Automated AI analysis of FOP smartphone retinal imaging has very high sensitivity for detecting DR and STDR and thus can be an initial tool for mass retinal screening in people with diabetes.

Study Link
  • Ramachandran Rajalakshmi, Radhakrishnan Subashini, Ranjit Mohan Anjana, and Viswanathan Mohan. “Automated Diabetic Retinopathy Detection in Smartphone-Based Fundus Photography Using Artificial Intelligence.” Nature Eye 32 (March 9, 2018): 1138–1144. Nature Paper LinkDOI.org Link.

Share This Post